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BACKGROUND & AIMS: The cause of Crohn’s disease (CD) is
unknown, but the current hypothesis is that microbial or
environmental factors induce gut inflammation in genetically
susceptible individuals, leading to chronic intestinal inflam-
mation. Case-control studies of patients with CD have cata-
loged alterations in the gut microbiome composition;
however, these studies fail to distinguish whether the altered
gut microbiome composition is associated with initiation of
CD or is the result of inflammation or drug treatment.
METHODS: In this prospective cohort study, 3483 healthy
first-degree relatives (FDRs) of patients with CD were
recruited to identify the gut microbiome composition that
precedes the onset of CD and to what extent this composition
predicts the risk of developing CD. We applied a machine
learning approach to the analysis of the gut microbiome
composition (based on 16S ribosomal RNA sequencing) to
define a microbial signature that associates with future
development of CD. The performance of the model was
assessed in an independent validation cohort. RESULTS: In
the validation cohort, the microbiome risk score (MRS) model
yielded a hazard ratio of 2.24 (95% confidence interval, 1.03-
4.84; P ¼ .04), using the median of the MRS from the discovery
cohort as the threshold. The MRS demonstrated a temporal
validity by capturing individuals that developed CD up to 5
years before disease onset (area under the curve > 0.65). The
5 most important taxa contributing to the MRS included
Ruminococcus torques, Blautia, Colidextribacter, an uncultured
genus-level group from Oscillospiraceae, and Roseburia.
CONCLUSION: This study is the first to demonstrate that gut
microbiome composition is associated with future onset of CD
and suggests that gut microbiome is a contributor in the
pathogenesis of CD.

http://crossmark.crossref.org/dialog/?doi=10.1053/j.gastro.2023.05.032&domain=pdf


WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Case-control studies of established Crohn’s disease fail
to distinguish whether alterations of gut microbiome
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rohn’s disease (CD) is one of the inflammatory bowel
composition are associated with future onset of Crohn’s
disease or a result of the inflammation.

NEW FINDINGS

This study identifies a preclinical gut microbiome
signature that is associated with future development of
Crohn’s disease and suggests that microbiome
communities are implicated in its pathogenesis.

LIMITATIONS

In the validation cohort, the predictive performance of the
microbiome risk score to predict Crohn’s disease onset
was modest, with a concordance index of 0.67.
However, the predictive value of the microbiome was
replicated using other machine learning algorithms.

CLINICAL RESEARCH RELEVANCE

This study suggests that the microbiome risk score could
offer the possibility to stratify healthy at-risk individuals
who would benefit from interventions aimed at
modifying the microbial imbalance and possibly
reducing the risk of developing Crohn’s disease.

BASIC RESEARCH RELEVANCE

This study suggests that gut microbiome is a potential
contributor in the pathogenesis of Crohn’s disease. We
found that the microbial community rather than
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Cdiseases (IBDs) characterized by chronic, relapsing
inflammation of the intestine. The cause of CD is unknown,
but the current hypothesis is that microbial or environ-
mental factors induce gut inflammation in genetically sus-
ceptible individuals, leading to chronic intestinal
inflammation and damage.1,2 Case-control studies of pa-
tients with established CD have cataloged alterations in the
gut microbiome composition3–7; however, these studies fail
to distinguish whether the altered gut microbiome compo-
sition is associated with initiation of CD or is the result of
inflammation or drug treatment.3

To address these issues, the Crohn’s and Colitis Canada
Genetic Environmental Microbial (GEM) project, a prospec-
tive cohort study of healthy first-degree relatives (FDRs) of
individuals with CD, was designed to identify the parame-
ters associated with the development of CD. Among these
parameters, we were interested in profiling the gut micro-
biome composition that precedes the onset of CD and to
what extent this composition predicts the risk of developing
CD. Specifically, we applied a machine learning approach to
the analysis of the gut microbiome composition in a large
cohort of healthy FDRs of patients with CD (N ¼ 3483) to
define a microbial signature that is associated with the risk
of developing CD.
individuals’ taxa are associated with risk of Crohn’s
disease.
Material and Methods
Subject Recruitment

The GEM project is a prospective cohort study of healthy
FDRs recruited between 2008 and 2017 (see Supplementary
Methods for inclusion and exclusion criteria). The recruiting
centers were from Canada, the United States of America, Israel,
the United Kingdom, Ireland, and New Zealand (Supplementary
Table 1). All subjects were contacted every 6 months via a
phone call (Supplementary Notes 1 and 2). If a subject dis-
closed that they had a diagnosis of CD (as of February 28, 2020,
the data freeze date for this study), this was confirmed by their
treating physician based on clinical, endoscopic, radiographic,
or histologic reports (Supplementary Note 3). All subjects or
their guardians gave written informed consent to participate in
the study. The study was approved by the Mount Sinai Hospital
Research Ethics Board and the local recruitment centers.
* Authors share co-first authorship.

Abbreviations used in this paper: abs, absolute value; CCC, Crohn’s and
Colitis Canada; CD, Crohn’s disease; CI, confidence interval; FDR, first-
degree relative; GEM, Genetic Environmental Microbial; HR, hazard ratio;
IBD, inflammatory bowel disease; MRS, microbiome risk score; rRNA, ri-
bosomal RNA; RSF, random survival forests; SD, standard deviation;
TMAP, N,N,N-trimethyl-L-alanyl-L-proline betaine.
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Profiling of the Fecal Microbiota
Stool samples at enrollment were collected in a commode

specimen collector and frozen before their delivery to the local
study site where they were stored at �80�C. The stool DNA
extraction was performed using the QIAamp DNA Stool Mini Kit
(QIAGEN) and V4 hypervariable region of bacterial 16S ribo-
somal RNA (16S rRNA) was amplified using the 515F/806R
primer pair8 and sequenced in paired-end mode (2 � 150 base
pairs). A median of 75,904 reads per sample were imported
into a QIIME artifact and were denoised using the dada2 plu-
gin9 (see Supplementary Methods). Imputed bacterial function
was generated with the use of the picrust2_pipeline.py script of
the PICRUSt210 2.4.1 package.

Assessment of Gut Inflammation Using Fecal
Calprotectin

Fecal calprotectin concentration was measured by the
BÜHLMANN fCAL ELISA test (Schöonrenbuch, Switzerland)
following the manufacturer’s protocol, and the average of the
duplicate values was used to define the calprotectin concen-
tration (see Supplementary Methods).

Assessment of Stool Metabolomics
For stool metabolomics, we used samples obtained at

enrollment of healthy FDRs from the nested case-control subset
of the cohort with an available microbiome risk score (MRS)
and metabolomic measurements from the Crohn’s and Colitis

https://doi.org/10.1053/j.gastro.2023.05.032


Table 1.Discovery and Validation Cohort Demographics

Variable
Discovery set
(n ¼ 2321)

Validation set
(n ¼ 1162) P value

Pre-CDa,b,c 43 30 .16

Female sexa 1252 (53.9) 587 (50.5) .06

Age at recruitment, yd

Median 17.0 17.0 .88
Mean 18.1 18.1
SD 7.8 7.6

Countrya

Canada 1395 (60.1) 705 (60.7) .76
United States 289 (12.5) 148 (12.7) .82
Israel 354 (15.3) 175 (15.1) .92
United Kingdom 245 (10.6) 118 (10.2) .76
New Zealand 30 (1.3) 10 (0.9) .31
Ireland 8 (0.3) 6 (0.5) .57

Time in the study, yb

Median 5.5 5.3 .42
Mean 3.1 5.8
SD 2.1 3.0

NOTE. Data are presented as number (%), unless indicated
otherwise. All percentages are a function of the total number
of individuals in the respective cohort. Country indicates the
country of recruitment of the individuals.
aThe P values were calculated using Fisher’s exact test.
bTime in the study is defined as the difference between stool
sample collection date and last follow-up date for healthy
individuals and sample collection date to date of diagnosis for
individuals who later developed CD.
cIndividuals healthy at the time of recruitment who later
developed CD.
dThe P values were calculated using the 2-sided Kruskal-
Wallis rank test.
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Canada (CCC) GEM Project (see Supplementary Methods). Stool
metabolomic measurements were performed with Metabolon
using the Metabolon’s DiscoveryHD4 Platform, following
manufacturer instructions, from the same stool sample as the
16S profile.

Construction of the Microbiome Risk Score
The gut microbiota is increasingly recognized as an ecologic

niche comprising many different taxa that act as a commu-
nity.11,12 In this context, changes in the abundance of a given
bacterial taxon can impact the capacity of other taxa to thrive in a
given environment. To address this complexity in the micro-
biome, we applied a random survival forests (RSF) methodology
to assess the relationship between the baseline gut microbiota
community and the future risk of developing CD.13

Using this approach, we developed a risk score that com-
bines the effects of relative abundances of bacterial genera, as
defined by stool 16S rRNA sequencing in a nonlinear,
nonparametric manner, to quantify an individual’s risk of
developing CD (see Supplementary Methods). The RSF model
allows for combining the high-dimensional microbiome
composition data and generating a score that quantifies the risk
of developing CD.13 The RSF model can efficiently handle the
relatively small number of events compared with the large
number of nonevents using resampling techniques.13,14 Finally,
the RSF model detects and incorporates high-order interactions
of the variables, which contribute to the risk score.13,14 Besides
the relative abundances of bacterial taxa, the RSF model
included the covariates age, sex, Shannon alpha diversity, and
the number of sequencing reads (see Supplementary Methods).

To develop the risk score model and to ensure its predictive
ability, we first randomly assigned two-thirds of the original
cohort into a discovery cohort and one-third into an indepen-
dent validation cohort. More precisely, the subjects in the
validation cohort were never used in the model construction.
The discovery cohort was used to develop the risk score using
the RSF methodology (see Supplementary Methods). The
generated MRS ranks the individuals according to their risk of
developing CD. We then applied the MRS to the independent
validation cohort to evaluate its performance. Here, we
assessed the predictive ability of the MRS as a continuous
variable using Cox’s proportional hazards model.

Results
Microbial Composition Risk Score Is Associated
With Future Risk of Developing Crohn’s Disease

We analyzed 3483 healthy FDRs with baseline micro-
biome data (Supplementary Figures 1–5 and Supplementary
Tables 1–3). The subjects were monitored for a median of
5.4 years. The median age at recruitment was 17.0 years
(range, 6–35 years), and 48% were <18 years old. In this
cohort, 73 individuals developed CD (pre-CD)
(Supplementary Table 2), with a median time from enroll-
ment to CD diagnosis of 3.1 years and a median age of new
CD onset of 17.7 years (Table 1).

To develop the MRS and ensure its predictive ability, we
first randomly assigned two-thirds of the original cohort
into a discovery cohort (n ¼ 2321) and one-third into an
independent validation cohort (n ¼ 1162) (Table 1, see
Supplementary Methods). The MRS that was developed
using RSF in the discovery cohort was subsequently applied
to the validation cohort. The MRS yielded a hazard ratio
(HR) of 1.58 per standard deviation (SD) of the MRS based
on discovery cohort (95% confidence interval [CI], 1.14–
2.18), a concordance index (C index) of 0.67, and P ¼ .0057
(Supplementary Table 4).

Using the value corresponding to the median of the MRS
from the discovery cohort as the threshold (see
Supplementary Methods), we obtained a HR of 2.24 (95% CI,
1.03–4.84; P ¼ .04) (Figure 1 and Supplementary Figure 6) in
the validation cohort. The model was also compared against
other machine learning methodologies, including Neural
Networks and eXtreme Gradient Boosting applied to survival
data (Supplementary Table 5), wherein the RSF model had the
highest concordance index (C index ¼ 0.67) of all models.

Microbial Composition Risk Score Predicts
Crohn’s Disease Up to 5 Years Before Disease
Onset

Because the MRS was measured in healthy asymptom-
atic at-risk individuals who later developed CD at different
times, we evaluated the relationship of the MRS with the time



Figure 1. Kaplan-Meier plot shows the risk score performance in the validation cohort. As described, we assigned the vali-
dation cohort individuals (n ¼ 1162) into 1 of 2 groups defined by the median of the MRS based on the discovery cohort and
compared the relative survival between these 2 groups. See the Supplementary Methods for term definitions.
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to CD onset. To do this, we examined the performance of the
MRS in the validation cohort to predict the risk of developing
CD when measured within 1.5, 3, and 5 years after the
baseline stool sample was collected, compared with those
who remained healthy and were monitored for the same
period. We found that the predictive accuracy of the model for
those subjects who developed CD within 1.5 years of having
their MRS measured had an area under the curve of 0.70
(Supplementary Figure 7; see Supplementary Methods). For
those subjects who developed CD within 3 and 5 years of
having their MRS measured, we obtained an area under the
curve of 0.71 and 0.67, respectively (Supplementary Figure 7).
Microbial Taxa Contributing to the Microbial
Composition Risk Score

To assess the specific contribution of the individual taxa
(in the gut microbial community) as part of the MRS to
predict future onset of CD, we calculated the importance of
each taxon as defined by the RSF model by using both
model- and permutation-based approaches on the discovery
cohort (see Supplementary Methods and Supplementary
Tables 6–9). We found that the 5 most important taxa
include the genera Ruminococcus torques, Blautia, Colidex-
tribacter, an uncultured genus-level group from Oscillospir-
aceae, and Roseburia (Figure 2A).

The most important taxon according to the RSF model was
the genus R torques group. This taxon was positively associ-
ated with an increased MRS (discovery: Spearman’s r ¼ 0.96;
P < 2e–16; validation: Spearman’s r ¼ 0.95; P <2e–16) (see
Supplementary Methods-Association between increasing MRS
decile and taxa relative abundance; and Figure 2B). The sec-
ond most important taxon was the genus Blautia. This taxon
was also positively associated with the MRS (discovery:
Spearman’s r ¼ 0.98; P < 2e–16; validation: Spearman’s r ¼
0.98; P < 2e–16). Another important taxon was the Roseburia
genus, which was negatively associated with the risk score
(discovery: Spearman’s r ¼ 0.91; P ¼ 5e–4; validation:
Spearman’s r ¼ �0.61; P ¼ .066) (Figure 2B). Finally, we
found that an increase in the abundance of the Faecalibacte-
rium genus (eighth most important taxon) was inversely
associated with an increase of MRS (discovery: Spearman’s
r ¼ �1, P < 2e–16; validation: Spearman’s r ¼ �0.79, P ¼
.009) (see Supplementary Methods, Supplementary Table 10,
and Supplementary Figure 8).

Finally, the relative abundance distribution for the top 10
taxa comparing those who remained healthy vs those who
developed CD followed a similar pattern as dictated by the
RSF (Figure 3, Supplementary Table 10, and Supplementary
Figure 9). We found that the top 20 taxa have a large num-
ber of interactions that define the MRS via the RSF model
compared with features of lower importance (Figure 2C;
Supplementary Figure 10, and Supplementary Table 11).
The Microbial Risk Score Comparison With the
Ecologic Partitioning of the Microbiome to
Predict Crohn’s Disease Onset

We next assessed whether the MRS for the entire cohort
was associated with a specific ecologic partitioning of the
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microbiome, previously described as enterotype15 (see
Supplementary Methods). We found that the MRS was signifi-
cantly and positively associated with the Firmicutes enterotype
(using a generalized estimating equations linear model, P ¼
2.0 � 10–16) (see Supplementary Methods and Supplementary
Figure 11). This finding is not surprising, because many of the
important taxa in the RSF model belong to the Firmicutes
phylum (Figure 3). However, the Firmicutes ecologic partition
itself or any other enterotype groups were not enriched in pre-
CD individuals (c2 P ¼ .1), indicating the limitation of such
classification to identify individuals at risk of developing CD.

Microbiome Risk Score and Imputed Microbiome
Function

Although the risk score was built using the gut micro-
biome composition and provides an initial understanding of
the taxa that may be involved with the development of CD, it
lacks information about the specific functional processes
that may potentially be associated with CD pathogenesis. In
an attempt to understand which microbial functions are
related to the microbial signature of developing CD, we
performed microbial functional imputation of our micro-
biome data using PICRUSt2 (see Supplementary Methods).

After imputation, we performed a correlation analysis at the
pathway level against the predicted MRS for our entire cohort
(N ¼ 3483) (Figure 4 and Supplementary Table 12). This
analysis found 46 of 409 microbial functions with a correlation
coefficient abs(r) > 0.25 and a false discovery rate-adjusted P
< .05. The top 10 most significant correlated pathways were all
negatively correlated with the MRS and included the reductive
acetyl coenzyme A pathway I, mycolate biosynthesis, palmito-
leate biosynthesis I, oleate biosynthesis IV, stearate biosyn-
thesis II, superpathway of fatty acid biosynthesis initiation,
(5z)-dodecenoate biosynthesis I, palmitate biosynthesis, 8-
amino-7-oxononanoate biosynthesis I, and biotin biosynthesis I.
Stool Metabolomic Assessment of the
Microbiome Risk Score

Although a previous study showed a high degree of
concordance between PICRUSt2 imputed metagenomic data
=
Figure 2. Description of taxa associations with our risk score fo
RSF using the discovery cohort. Importance values were ca
regression tree built using the bootstrap samples from the discov
family the taxon belongs to (see Supplementary Methods and S
value of a given taxa. The y-axis represents the taxa contributin
color coded as indicated on the right of the figure. (B) Log10 rel
axis) according to the RFS model and their association with eac
for visualization purposes). This information shows the directio
generated. Spearman correlation between log(median relative
(r ¼ 0.96; P < 2e–16), Blautia (r ¼ 0.98; P < 2e–16), Colidextria
Roseburia (r ¼ 0.91; P ¼ 5e–4), and Eubacterium ventriosum g
relationship between the relative abundance of each taxon and
representation of the interactions according to the RSF model of
in the Supplementary Methods. Each node corresponds to one
to the rank column in A. The size of the node is proportional to th
presence of an edge between any 2 taxa indicates an interaction
of the interaction score for a given pair of taxa. (See Supplemen
for interaction score of all taxa pairs is 0 to 0.067.
to their corresponding shotgun sequencing data,10 PICRUSt2
may suffer from imputation bias. Moreover, PICRUSt2 and
shotgun sequencing data only provide information about the
genomic potential present in the community and may not
necessarily correlate with proteomic or metabolomic pro-
files of the community.16 For this reason and to further
understand how our pre-CD gut microbiome signature may
play a functional role, we explored the baseline stool
metabolomics data set available from a subset of the cohort
(n ¼ 122), comprising 56 pre-CD and 66 individuals who
remained healthy (see Supplementary Methods). Those who
later developed CD (n ¼ 56) were closely matched 1:1 by
age, sex, follow-up duration, and geographic location with
control FDRs remaining healthy (n ¼ 66) (Supplementary
Table 13). This exploratory analysis identified 24 metabo-
lites of 1029 stool metabolites with a correlation coefficient
abs(r) > 0.25 with a nominal significance (P < .05) with the
MRS (Supplementary Tables 14 and 15 and Supplementary
Figures 12–14). The top 10 most significant correlated
metabolites were all negatively correlated with the MRS and
include cytosine, N,N,N-trimethyl-L-alanyl-L-proline betaine
(TMAP), cytidine, 2,3-dihydroxyisovalerate, gentisate, nic-
otinate, guanine, xylose, 8-hydroxyguanine, and b-alanine.
The Microbiome Risk Score Is Associated With
Crohn’s Disease Independent of Fecal
Calprotectin

Because subclinical gut inflammation may affect the gut
microbial composition, we assessed the possible relation-
ship between a marker of gut inflammation and MRS per-
formance. We used fecal calprotectin levels measured from
the same stool sample from which we measured the 16S
profile as a proxy for subclinical gut inflammation. We
performed a Cox proportional hazards model using the MRS
in the subset of the validation cohort consisting of in-
dividuals with microbiome composition and fecal calpro-
tectin measured (n ¼ 1109). We categorized individuals by
the presence or absence of gut inflammation indicated by
their fecal calprotectin levels, using a threshold of >120 mg/
g fecal calprotectin.17–19 In the validation set with available
r developing CD. (A) Taxa relative importance defined by the
lculated by the mean position relative to the root of every
ery cohort. The colors of the individual bars correspond to the
upplementary Table 6). The x-axis represents the importance
g to the MRS. Family-level taxonomies of the given figure are
ative abundance distribution of the 6 most important taxa (x-
h decile of increasing risk score. (1y-axis, log transformation is
n of the contribution of each taxon to the risk score model
abundance) and decile group: Ruminococcus torques group
cter (r ¼ �0.86; P ¼ .003), UCG.002 (r ¼ �0.90; P ¼ 9e–4),
roup (r ¼ �0.80; P ¼ .008). We can observe the nonlinear

the resulting risk score (Supplementary Table 10). (C) Network
the top 20 important taxa. Interactions are defined as outlined
of the top 20 most important taxa, and their labels correspond
e degree of the node (ie, number of edges in each node). The
score >0. The edge color and line weight represent the value
tary Methods and Supplementary Table 11.) Range of values



Figure 3. Relative abundance distribution of the top 10 important taxa from the RSF model in the individuals from the dis-
covery and validation cohorts. The dark blue dots and dark blue box plots represent the relative abundance for a specific taxon
for every healthy individual in the corresponding cohort. The red dots and red box plots represent the relative abundance for a
specific taxon for every individual that later developed CD in the corresponding cohort. The y-axis represents the log10
transformation of the relative abundances for each individual and taxon (for visualization purposes). The distribution of the
relative abundances for the most important taxa in the RSF follow a similar pattern (with exceptions) in the entire cohort divided
by health status at the time of analysis. Demographic information is presented in Table 1. The figure simply indicates the
consistency of direction of differences in the discovery and validation sets with the direction in which individual taxa are
associated with the MRS. When assessed individually, the taxa are not statistically significantly associated with CD devel-
opment (q-value > 0.05) when evaluated with a Cox proportional method. This result potentially suggests the nonlinearity and
multidimensional nature of the association of the microbial composition with future development of CD.
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fecal calprotectin data, a Cox’s proportional model having
only the continuous MRS yielded a HR of 1.51 per SD (95%
CI, 1.10–2.08 per SD; P ¼ .011). When we included the fecal
calprotectin indicator in the model using the same data set,
the continuous MRS yielded an HR of 1.42 per SD (95% CI,
1.02–1.98 per SD; P ¼ .041) (Supplementary Table 16 and
Supplementary Figure 15).

Notably, 93% (515 of 555) of the unaffected FDRs who had
elevated baseline fecal calprotectin >120 mg/g remained
asymptomatic during a mean follow-up duration of 6.0 years
and up to a maximum follow-up of 11.4 years (Supplementary
Figure 16). As a sensitivity analysis, we applied the MRS to the
subgroup of FDRs with low baseline fecal calprotectin (<120
mg/g) in the validation cohort. The HR of the MRS for this
subgroup (1.29 per SD; 95% CI, 0.72–2.31 per SD) showed
consistent direction of effect compared with that of the entire
validation cohort (1.51 per SD; 95% CI, 1.10–2.08 per SD),
although not statistically significant (Supplementary Figure 17).
Finally, an additional sensitivity analysis adjusting for dichot-
omized fecal calprotectin based on cutoffs of 50 or 100 mg/g
showed consistent results (Supplementary Figures 18 and 19).
Discussion
Until now, most studies suggesting involvement of the

microbiome in CD have been cross-sectional case-control
studies of patients with established CD. However, CD
activity of inflammation and related treatment in those with
established disease may introduce confounding effects on
the microbial composition. The use of prospective preclini-
cal cohort studies minimizes such confounders and is a
more powerful approach to characterizing the contribution
of the microbiome to CD onset.20,21 However, due to the rare
incidence rate of CD, prospective studies require significant
time and resources to observe a meaningful number of
incident cases. To address these issues, the CCC GEM proj-
ect, a prospective cohort study of healthy FDRs of in-
dividuals with CD, was designed to identify the parameters
associated with the development of CD.

Using data collected from the GEM cohort, we developed
an MRS model from a subset of the original cohort capable
of classifying individuals that later go on to develop CD. We
hypothesized that differences in the baseline gut microbiota
composition between healthy individuals who later develop
CD compared with those who remain healthy provide
insight in the microbial determinants of CD pathogenesis.

To date, most microbiome studies have focused on
defining the association of individual taxa.22–24 The gut
microbiota is increasingly recognized as an ecologic niche
comprising many different taxa that act as a community.11,12

In this context, changes in the abundance of a given bacterial
taxon can impact the capacity of other taxa to thrive in a
given environment. To address this complexity in the
microbiome, we applied an RSF methodology to assess the



Figure 4. Results of the analysis of imputed microbial function in the entire cohort. Volcano plot of Spearman correlation values
(r) vs P values of imputed microbial function using PICRUSt2 against the microbial risk score. q-value, false discovery rate-
corrected P value. The red dots represent functions whose correlations are statistically significant (q-value < 0.05) and abs(r)
> 0.25. The blue dots are those microbial functions whose correlation coefficients are statistically significant (q-value < 0.05),
but whose abs(r) < 0.25. The black dots represent functions whose correlations are neither statistically significant (q-value >
0.05) and abs(r) < 0.25. We have labeled the top 10 functions with both significant q-value and abs(r) > 0.25. (See
Supplementary Table 12.) The x-axis represents the abs(r) and y-axis the log10(q-value).
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relationship between the baseline gut microbiota commu-
nity and the future risk of developing CD.13 The RSF model
allows for the high dimensionality of the microbiome
composition data in generating a score that quantifies the
risk of developing CD.13 After developing and validating the
MRS we then identified the most important microbial fea-
tures from the machine learning model in an attempt to
obtain insights. These microbial features may represent
nonlinear, nonparametric functions that cannot be easily
interpreted with univariable analysis or traditional statisti-
cal models. It is noteworthy that when assessed individually,
none of the taxa reached statistical significance (after mul-
tiple testing correction; q value > 0.05 with Cox’s propor-
tional model) in the discovery cohort and in the entire
cohort, suggesting that a nonlinear and multidimensional
nature of the microbial composition contributes to the risk
of CD.

Of the taxa contributing the most to the MRS, we found
that the increased abundance of R torques and Blautia was
positively correlated with the MRS, suggesting that these
taxa might be important contributors to CD onset. Indeed, R
torques species are mucin degraders that have been shown
to be increased in patients with established CD.25 R torques
appears to induce an increase in other mucin-using bacteria,
perhaps aiding in compromising this protective barrier in
the gut epithelium,26 whereas Blautia is another mucin
degrader observed to be increased in IBD and primary
sclerosing cholangitis compared with healthy controls.27

Contrarily, we found that the abundance of the Roseburia
genus correlates negatively with the MRS, suggesting that
this genus might harbor protective function against CD
onset. Species from the Roseburia genus have been identi-
fied as one of the taxa decreased in studies of newly diag-
nosed patients with CD6 and established IBD.28 In a mouse
model of colitis, this taxon was shown to increase the ratio
of regulatory T cells and decrease interleukin 17.28

Finally, we found that an increase in the abundance of
the Faecalibacterium genus (eighth most important taxon)
was inversely associated with an increased MRS, which is
consistent with previous studies reporting that F prausnitzii
is depleted in patients with CD compared with healthy
controls.29–31 The protective effect of F prausnitzii on the
development of inflammation is hypothesized to be due to
anti-inflammatory factors found in the supernatant of
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cultures of F prausnitzii.30,32 Thus, this is the first study to
show that the decreased abundance of Faecalibacterium
may be a preclinical signature of CD that can be observed
many years before CD onset. Whether restoring the abun-
dance of Faecalibacterium during the preclinical phase could
delay or prevent the development of CD remains to be seen.

Also, although this study was designed to capture CD,
some individuals later developed ulcerative colitis.33 Our
results indicate that none of the 10 taxa contributing the
most to the MRS were associated with ulcerative colitis
onset. At this time, it is tempting to speculate that there are
differences in organisms involved in the onset of either CD
or ulcerative colitis onset.

We further assessed the imputed function of the
microbiome by PICRUSt2 and its relation to the MRS. One of
the microbial pathways negatively associated with the MRS
was that of biotin biosynthesis (r ¼ �0.32, false discovery
rate–adjusted P ¼ 3.1 � 10–84). Biotin (vitamin B7 or
vitamin H) is a micronutrient obtained by humans through
dietary intake and is also produced by gut bacteria. Micro-
nutrient deficiencies, including vitamin B7 deficiency, have
been documented in patients with IBD.34 There is also
experimental evidence of biotin supplementation alleviating
a colitis-like phenotype in a mouse model.34

The second interesting function identified, which was
also negatively correlated with the MRS, was b-(1,4)-
mannan degradation (r ¼ �0.31; false discovery rate–
adjusted P ¼ 2.3 � 10–78). b-(1,4)-Mannans are widely
present in the human diet as part of hemicellulose and
thickening additives. b-(1,4)-Mannans are resistant to hu-
man enzyme degradation and are processed almost
entirely by the gut microbiome.35 b-(1,4)-Mannans have
emerged as popular prebiotics to combat the action of
mucin degraders that may disrupt the protective mucus
layers in the gut epithelium.35 This points to an essential
function whose reduction might have a strong impact
despite an increased consumption of b-(1,4)-mannans
through dietary changes.

We were also able to detect stool metabolomics associated
with the MRS in a subset of the cohort. Notably, cytosine,
which was previously shown to be decreased in CD compared
with healthy controls,36 together with its derivate cytidine,
had the strongest negative correlation with the MRS
(r ¼ �0.39, P ¼ 1.2 � 10–5, and r ¼ �0.35, P ¼ 8.2 � 10–5).
Additionally, the MRS pre-CD signature was associated with a
reduction of metabolites that have anti-inflammatory or
antioxidant activity. Specifically, gentisate and nicotinate
were negatively correlated withMRS (r¼�0.26 to�0.31, P¼
3.2 � 10–4–2.3 � 10–3). Previously, nicotinate, also known as
niacin or vitamin B3, was reported to suppress inflammation
andexhibit antioxidantproperties,whereas gentisate, showeda
broad spectrum of anti-inflammatory, antioxidant,37 and anti-
microbial properties38,39; both metabolites were depleted in
patients with IBD compared with healthy controls.40–43

These findings suggest that a reduction in gut
microbiome-derived anti-inflammatory metabolites may
precede the development of CD. Interestingly, these pro-
tective metabolites were also positively correlated with the
abundance of Faecalibaterium and Lachnospira (some of the
top contributors of our pre-CD microbiome signature),
which indicates a potential biological interaction between
the abundance of these metabolites and the microbial
composition. (Supplementary Figure 10).

In contrast, the metabolomics data showed a higher
abundance of (12 or 13)-methylmyristate (A15:0 or I15:0)
and (14 or 15)-methylpalmitate A17:0 or I17:0)with theMRS
(r¼ 0.27, P¼ 3.0� 10–3 and r¼ 0.26, P¼ 4.3� 10–3). These
metabolites belong to the sphingolipid class of organic com-
pounds that can act as signalingmetabolites once synthesized
by bacteria to communicate with the host.44–46 Sphingolipids
were previously found to be increased in IBD patients.47,48

Our findings suggest that the dysregulation of sphingolipid
abundancemay already be present before the development of
CD. These risk metabolites were positively correlated with R
torques (our top important taxon in the MRS), suggesting a
microbial effect on both the metabolite abundance and dis-
ease risk (Supplementary Figure 14).

Finally, the untargeted metabolomics analysis also
identified TMAP, which was negatively correlated with MRS
(r ¼ �0.35, P ¼ 7.9 � 10–5). Although, the structure of
TMAP was recently identified, little is known regarding its
biological activity.49 Further studies will need to explore
how TMAP may be involved in CD pathogenesis. Of note, 79
metabolites were only nominally associated with CD onset
(P < .05), likely due to the small sample size of this
exploratory analysis (see Supplementary Methods and
Supplementary Figure 13). Studies examining larger sam-
ples will be required to validate these results.

Notably, a proportion of healthy FDRs may already have
subclinical gut inflammation at the time of recruitment.
However, when we included the fecal calprotectin indicator
in the model, the MRS yielded an HR of 1.42 per SD (95% CI,
1.02–1.98 per SD; P ¼ .041) (Supplementary Table 16 and
Supplementary Figure 15). The slight decrease in the HR
suggests that the MRS is not greatly confounded by the
absence or presence of subclinical gut inflammation, as re-
flected by elevated fecal calprotectin. Notably, when
considering adjusting for continuous fecal calprotectin
levels, we found evidence of a nonlinear effect of fecal cal-
protectin on CD risk (Supplementary Figure 20). Adjusting
for both nonlinear and linear components of continuous
fecal calprotectin should be further explored in future
studies that are appropriately powered to account for this
non-linear effect.

Another potential limitation of our study is that our
findings are representative of the healthy at-risk FDR pop-
ulation and thus may not pertain to the general population.
Moreover, although the MRS was statistically associated
with future onset of CD, the predictive performance of the
MRS remains relatively modest, indicating that the micro-
biome in combination with other factors, such as genetic
risk and dietary pattern, may improve the risk stratification
of CD onset among healthy FDRs.

Finally, we only have access to a single time point, which
means that dynamic changes in individuals that could lead
to disease may not be captured. Despite the considerable
resources required, we recommend including longitudinal
samples to capture the succession of events that lead to
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disease onset. Experimental studies will be needed to assess
whether the associations presented in this study represent a
cause or effect of CD pathogenesis. Nevertheless, we believe
that our study sets a framework for future prospective
cohort studies to examine the relationship between micro-
bial composition and the risk of developing chronic
immune-mediated diseases such as CD.
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Conclusion
This study is the first to demonstrate that gut microbiome

composition is associated with future onset of CD, which
suggests that the gut microbiome is a potential contributor in
the pathogenesis of CD. We further demonstrated that
microbiome composition can define an individual’s risk to
develop CD according to our prediction model. The involve-
ment of the microbiome in disease onset was validated in an
independent cohort and remained associated when adjusted
for inflammation as measured by fecal calprotectin, and the
derived MRS predictability persisted even when the MRS was
measured >5 years before disease onset. Integration of the
MRS with other biomarkers for improved risk stratification
remains to be explored in future studies. Understanding the
biomarkers associated with the risk of CD and the biology of
these biomarkers as they relate to pathogenesis will also be
necessary to develop novel strategies for disease prevention
in high-risk populations and for improvement in treatment in
patients with established disease.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://dx.doi.org/10.1053/
j.gastro.2023.05.032.
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